Disappearing induced magnetosphere at Venus: Implications for close-in exoplanets

نویسندگان

  • T. L. Zhang
  • J. Du
  • Y. J. Ma
  • H. Lammer
  • W. Baumjohann
  • C. Wang
  • C. T. Russell
چکیده

[1] The solar wind interaction with a planetary atmosphere produces a magnetosphere-like structure near the planet whether or not the planet has an intrinsic global magnetic field. In the case of planets like Venus or Mars, which have no global intrinsic magnetic field but possess a significant atmosphere, a magnetosphere is induced in the highly conducting ionosphere by the time-varying magnetic field carried by the solar wind. The induced magnetosphere at Venus and Mars is almost a ‘‘permanent’’ feature of the solar wind interaction. Here we report a Venus Express observation of the absence of the dayside part of the induced magnetosphere, when the interplanetary magnetic field (IMF) is nearly aligned with the solar wind flow. Using MHD simulations for this extreme IMF orientation, we examine the global interaction of the solar wind with Venus when the magnetic barrier disappears. Furthermore, we estimate the atmospheric loss under this extreme situation. While this solar wind aligned IMF interaction with a planet case is presently rare, and even rarer over solar system history, it might be an appropriate analogue of the interaction of a stellar wind with close-in exoplanet. Thus the solar wind interaction with Venus under this extreme condition might provide us a natural laboratory for studying the evolution of the atmospheres of ‘‘hot Jupiters’’ as well as close-in ‘‘terrestrial’’ planets. Citation: Zhang, T. L., J. Du, Y. J. Ma, H. Lammer, W. Baumjohann, C. Wang, and C. T. Russell (2009), Disappearing induced magnetosphere at Venus: Implications for close-in exoplanets, Geophys. Res. Lett., 36, L20203, doi:10.1029/2009GL040515.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced magnetosphere and its outer boundary at Venus

[1] The induced magnetosphere at Venus consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. Initial Venus Express measurements indicate a well-defined outer boundary, the magnetopause, of the induced magnetosphere. This magnetopause acts as an obstacle to deflect the solar wind. Across this boundary, the magnetic field exhi...

متن کامل

Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength

Context. The search for radio emission from extra-solar planets has so far been unsuccessful. Much of the effort in modelling the predicted emission has been based on the analogy with the well-known emission from Jupiter. Unlike Jupiter, however, many of the targets of these radio searches are so close to their parent stars that they may well lie inside the stellar magnetosphere. Aims. For thes...

متن کامل

Implications of MAVEN Mars Near-Wake Measurements and Models

Mars is typically viewed as a member of the category of weakly magnetized planets, with a largely induced magnetosphere and magnetotail produced by the draped fields of the solar wind interaction. However, selected MAVEN suprathermal electron and magnetic field observations in the near wake, sampled along its elliptical orbit during the early prime mission at altitudes ranging from its ~150 km ...

متن کامل

MESSENGER and Venus Express observations of the solar wind interaction with Venus

[1] At 23:08 UTC on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude of 338 km during its final flyby of Venus en route to its 2011 orbit insertion at Mercury. The availability of the simultaneous Venus Express solar wind and interplanetary magnetic field measurements provides a rare opportunity to examine the influence of upstream conditions on this planet’s solar win...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009